Lakshika Rathi

Curriculum Vitae

Research Interests

Quantum Architecture, Machine Learning for Quantum, Quantum Machine Learning

Education

- 2023 2025 **University of Wisconsin-Madison** *Master's* Masters in Computer Sciences (GPA - 4/4) Research Advisor: Prof. Swamit Tannu
- 2019 2023 Indian Institute of Technology Delhi Bachelor's of Technology BTech in Electrical Engineering with a Minor in Computer Science (GPA - 9.23/10.00) Research Advisor: Prof. Saurabh Gandhi

Publications

- Papers (1) L. Rathi, S. Diadamo, A. Shabani, "Quantum Autoencoders for Learning Quantum Channel Codes" 16th International Conference on COMmunication Systems & NETworkS (COMSNETS) 2024
 - (2) L. Rathi, et al., "Cycle-GANs generated difference maps to interpret race prediction from medical images" *FAIMI: The MICCAI 2024 Workshop on Fairness of AI in Medical Imaging*
 - (3) L. Rathi, E. Tretschk, C. Theobalt, R. Dabral, V. Golyanik, "Fully Quantum Auto-Encoding of 3D Shapes" British Machine Vision Conference (BMVC) 2023

Research Experience and Internships

Current Qubit Readout for Neutral-atom systems using ML

University of Wisconsin-Madison. Guide: Prof. Swamit Tannu

- (a) Pruning convolutional neural network (CNN) models to process the readout of neutral-atom-based systems on a field-programmable gate array (FPGA)
- (b) Characterizing the background noise and crosstalk in the EMCCD based readout mechanism

2024 Quantum Capability Learning with Physics-aware Neural Networks

Quantum Performance Laboratory - Sandia National Laboratories. Guide: Dr. Timothy Proctor

(a) Studying the usage of physics-aware neural networks to accurately learn a quantum computer's capability by predicting the circuit fidelities of complex systems subject to Markovian errors

2023-24 Classical Parallelism and Compiler Optimization for Neutral Atom Architectures

University of Wisconsin-Madison. Guide: Prof. Swamit Tannu

- (a) Evaluated existing compilers such as SABRE (utilizing heuristic search and circuit reversal techniques) and other SAT/SMT-based compilers to assess the effectiveness of long-range interactions in neutral-atom systems, along with testing newer tools for reconfigurable neutral-atom systems
- (b) Studied the trade-offs in utilizing classical parallelism on NISQ hardware, specifically focusing on the optimal speedup achievable when mapping k-copies of a quantum circuit on a neutral-atom grid

2023 **Quantum Network Protocols Simulation, Quantum Auto-encoders for learning channel codes** *Cisco Quantum Research. Guide: Dr. Stephen DiAdamo.*

- (a) Software: Implemented Quantum Network Protocols like multi-node entanglement swap, QKD and quantum teleportation using QuNetSim, NetSquid and Squanch in the backend framework of Cisco Networks platform - QNet Lab
- (b) Research: Developed a Machine Learning framework for generating quantum channel codes to evaluate them in classical, entanglement-assisted and quantum communication scenarios

2022 Quantum Point-Cloud Auto-encoders 🖓 🌐

Max-Planck-Institut für Informatik, Germany. Guide: Dr. Vlad Golyanik.

- (a) Investigated **hybrid quantum-classical auto-encoder models** in the context of 3D representations; trained such hybrid models using a specialized back-propagation algorithm in the Qiskit and Pennylane frameworks
- (b) Analyzed ways to mitigate barren plateaus for auto-encoding point clouds and devised a normalisation scheme for encoding

2021-22 Quantitative Translational Imaging - Race Analysis Project

QTIM Lab Martinos Center, affiliated with Harvard. Guide: Jayashree Kalpathy-Cramer.

- (a) Researched the underlying mechanism by which AI models can recognize race in medical images; examined the extent to which race-predicting models rely on confounds by using **Cycle Generative Adversarial Networks**
- (b) Worked on building occlusion maps to help identify the prominent regions responsible for predicting a particular race

2020-21 Expressibility and Trainability of Quantum Machine Learning Models 🗘

- University of Edinburgh, UK. Guide: Prof. Elham Kashefi, Dr. Niraj Kumar.
- (a) Worked under Professor Elham Kashefi to analyze the expressibility of Quantum Models, primarily parametrized quantum circuits, through tools in Information theory like Fisher Information Metric and Effective Dimension
- (b) Explored the concepts of multiple data re-uploading in quantum circuits to enhance the model's capacity and expressibility

2022 Mesoscale Modeling of the Mouse Brain in different states of consciousness 🖓 🏂

Indian Institute of Technology Delhi. Guide: Prof. Saurabh Gandhi

- (a) Investigated the mechanism of how information flow differs between an awake and an anesthetized mouse to help understand the mechanisms of anaesthesia and improve our ability to monitor anaesthesia
- (b) Modeled brain connections using data-constrained recurrent neural network (RNN) models incorporating multiple regions, and applied the current-based decomposition (CURBD) technique to analyze spiking data from mouse brain

2021 Personalized Intelligent Teaching Assistant (PITA)

Infosys Summer Program. Guide: Kajari Ghoshdastidar

(a) Designed and implemented a mobile AI-powered software engine with the primary aim of reducing the workload on Teaching Assistants, leveraging automation to handle routine queries, thus enhancing overall efficiency in academic support

2020 Analyzing Climate Factors to predict the spread of Covid-19

Indian Institute of Technology Delhi. Guide: Prof. Jay Dhariwal

- (a) Performed a **statistical analysis** of climatic data from the major cities in 165 countries around the world, taking into account the number of COVID-19 cases from January to June 2020
- (b) Implemented **supervised Machine Learning** techniques with Python to predict the spatial spread and seasonality

Course Projects

Spring 2024 Studying spatial and temporal effects of running ML workloads

Big Data Systems. Guide: Prof. Shivaram Venkataraman.

Temporally co-located workloads across nodes to analyze power, frequency and temperature and study the effects of thermal throttling and different cooldown periods.

Fall 2023 LLMs for Quantum Circuit Compilation

Foundation Models & the Future of Machine Learning. Guide: Prof. Fred Sala. Explored the usage of LLMs as an ensemble of quantum compilers, assisting in determining the most suitable compiler for a given problem and provide a tailored solution accordingly.

Fall 2022 Impact of Non-IID distribution and label noise on Federated Semi-Supervised Learning

Special Topics in ML - Computer Vision. Guide: Prof. Anurag Mittal. Studied the impact of data distribution (IID v/s non-IID) on the FedAvg algorithm along with the impact of label noise on federated training.

Spring 2022 Network Analysis of the Indian Stock Market O Special Topics in Computer Applications - Social Computing. Guide: Prof. Abhijnan Chakraborty. Constructed and analyzed a network of Indian stock market returns using correlation, community detection techniques, and Gephi visualizations to identify key market segments and behaviors during crises.

Spring 2021 Gesture Recognition

Digital Signal Processing. Guide: Prof. Lalan Kumar.

Implemented the Research Paper- "High Density Surface EMG-based Gesture Recognition using a 3D Convolutional Neural Network" using Matlab, Keras and TensorFlow frameworks

Fellowships and Hackathons

2024 iQuHack Hackathon by MIT-CQE, Boston 🖓 🌐

• Attended MIT's annual Hacakthon, working on the portfolio optimization problem given by Moody's

2023 BigQ Hackathon by CQE and QuantX, Chicago

• Attended the BigQ Hackathon, a four-day quantum competition, selected among the top 5 teams out of 9, working on a predictive maintenance problem given by United Airlines

2023 NYUAD International Hackathon for Social Good, Abu Dhabi

 Secured 2nd place among 16 International teams, working on designing an eco-friendly water distribution network based on Adiabatic Quantum Computing and Quantum ML

2023 ICTP-Quantinuum Quantum Hackathon, Trieste, Italy

 Secured 2nd place among the 18 International teams, working on the Merck Gruppe/Merck Healthcare QNLP challenge, designing a classifier to detect adverse drug events using Lambeq

2020-22 Google Women Techmakers Engineering Fellow

- Selected among the **top 126 candidates** out of 15,000 girls for a two-year experiential Program (WTEF) to become a professional coder; mentored by senior engineers at **Google and TalentSprint**
- Created a standard simulation for Quantum Key Distribution BB84 Protocol, using Qiskit

Summer Schools and Workshops

2024 LLNL QuDIT Testbed Workshop, CA, USA

Workshop jointly hosted by San Jose State University and Lawrence Livermore National Lab, featuring research talks and hands-on training on LLNL's innovative QuDiT testbed

- 2024 Workshop on Quantum Communication and Computing, COMSNETS 2024, Bangalore, India Presented the Poster - "Quantum Autoencoders for learning Quantum Channel Codes"
- 2019 Harry Messel International Science School, University of Sydney, Australia Selected among top 5 candidates to represent India at the Summer school along with 140 students across 7 countries; Attended the residential programme of talks by world-renowned scientists, lab tours and social events around Sydney

Honors and awards

- Sep 2022 Received the Endowment Merit Scholarship, ranking among top 15 female students at IIT Delhi
- Jun 2021 Selected as the Semi-Finalist in the Cargill Global Scholars Program, an initiative by Cargill and IIE
- Jan 2021 Achieved **Rank 1** & won the Best Education Hack award at GirlHacks, organized by the New Jersey Institute of Technology for building Learn Aid, a mobile app designed to assist hearing-impaired or visually-impaired students
- Mar 2018 Recipient of the **Kishore Vaigyanik Protsahan Yojana**, a coveted fellowship by the Department of Science and Technology, Government of India awarded to the top 1% students across the country
- May 2017 Awarded the NTSE Scholarship after a two-tier merit-based procedure by NCERT, Government of India

Positions of Responsibility

- 2024 **Research Mentorship** | Quantum Sensing, University of Wisconsin-Madison Mentored Yining Wang, a Junior Undergrad in implementing the Research paper - Adaptive Circuit Learning in Quantum Metrology
- 2023-24 **Teaching Assistant** | CS400, University of Wisconsin-Madison Responsible for conducting office hours and grading assignments on **industry-level Java code**
- 2020-21 **Core Team Member** | CovEd India Worked as Core Team Member responsible for Data Handling to help school students during COVID-19
 - 2020 Academic Mentorship | PYL100, IIT Delhi Responsible for guiding a group of 170 freshmen for the course "Electromagnetics and Quantum Mechanics"

Technical Skills

Programming
LanguagesC++, Python, Haskell, Java, HTML, CSS, Git, JavaScript, Shell, Bash
LanguagesSoftware
ToolsLATEX, Qiskit, GitHub, Autodesk Inventor, Arduino, Pygame, Graphviz, Pennylane, QuTip

Data Science Matplotlib, MATLAB, PyTorch, SciPy, Pandas, Keras, Tensorflow, OpenCV